衝突破壊強度Q*Dのサイズ依存性とは?


Catastrophic Disruptions Revisited Benz and Asphaug, 1999

はじめに

- □太陽系の進化において、衝突は重要である
 - □小惑星族や星間塵、他の小惑星、連星etc...
- □ 衝突は3つのタイプに分けられる
 - クレーター形成 (cratering)
 - ■天体の全体には影響せず、クレーターを形成
 - □ 粉砕(shattering)
 - ■天体を破片に粉砕
 - □ 分散 (dispersing)
 - ■破片が脱出速度を超える

エネルギー密度Q(エネルギー/ターゲット質量)

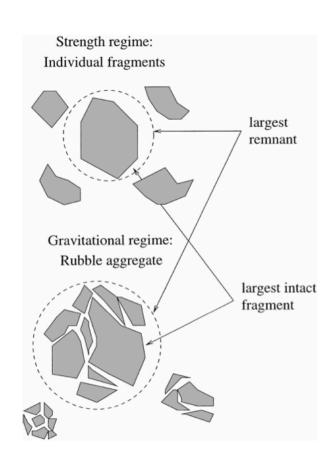
- $\square Q = m_i v_i^2 / 2M_t$
- □ Q*_s:最大破片がちょうどターゲットの質量の半分になるときのエネルギー密度
- Q*_D: (再集積した)最大破片が ちょうどターゲットの質量の半分 になるときのエネルギー密度
 - □ 強度支配域では...
 - Q*_S=Q*_D
 - □重力支配域では...
 - Q*_D>Q*_S

今回の論文

- □ smooth particle hydrodynamics(SPH)法を用いて、cm から数百kmサイズの玄武岩ターゲットと氷ター ゲットにおける衝突をシミュレーションする
- □ Q*_Dを決定することを目的とする
- □物質強度と自己重力の効果を組み合わせる
 - ■強度支配域、重力支配域、中間領域をすべてカバー する

玄武岩天体、あるいは氷天体の衝突をシミュレーションし、カタストロフィック衝突破壊強度Q*_Dを決める

破片の特定

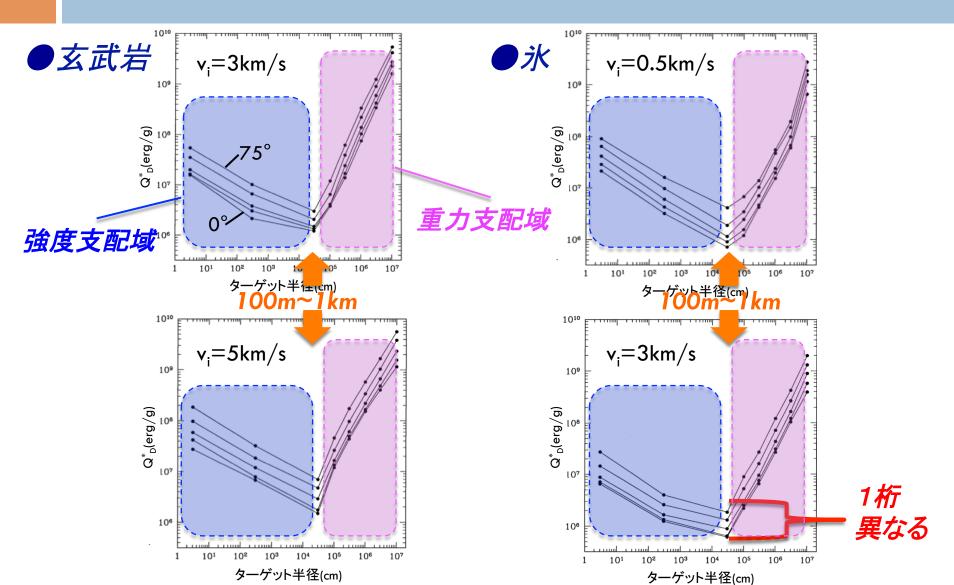

- 1. 一枚岩の破片を特定
 - 質量、位置、速度、角運動量、慣性 モーメントを得る
- 2. 50-100mを超えるターゲット
 - ⇒ 一部は再集積
 - 粒子、破片間にはたらく結合エネルギーを計算
 - ② 結合されなかった粒子を取り除く

重力によって再集積した集合体の質量、位置、速度、角運動量、慣性モーメントを得る

□最大破片の特定

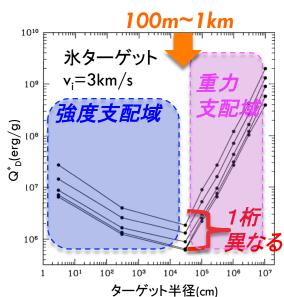
繰り返し

- □ 強度支配域: 一枚岩の破片
- □ 重力支配域: 一枚岩の破片の集合体


シミュレーション初期条件

- 半径:3cm,3m,1km,3km,10km,30km,100km
- □物質:玄武岩,氷
- □ 衝突角度:0°, 30°, 45°, 60°, 75°
- □ 衝突速度: 氷; 0.5km/s, 3km/s, 玄武岩; 3km/s, 5km/s
- □ 合計480の異なるシミュレーション
- □ ターゲットを42,000個の粒子で再現
 - □ 最大破片の特徴を決めるのに十分
- □ 弾丸: 3km/s, 5km/s; 800個の粒子,
 - 0.5km/s;7000個の粒子

衝突破壊強度Q*D


- □ Q*_Dは、Qの異なる3つのシミュレーションを補間することによって得られる
 - f_{max}=M_{lr}/M_{pb}; 0.3-0.7 (M_{lr}:最大破片質量, M_{pb}:ターゲットの質量)
 - 多項式フィッティング: f_{max}=aQ²+bQ+c
 - $f_{max}(Q_{D}^{*})=0.5$

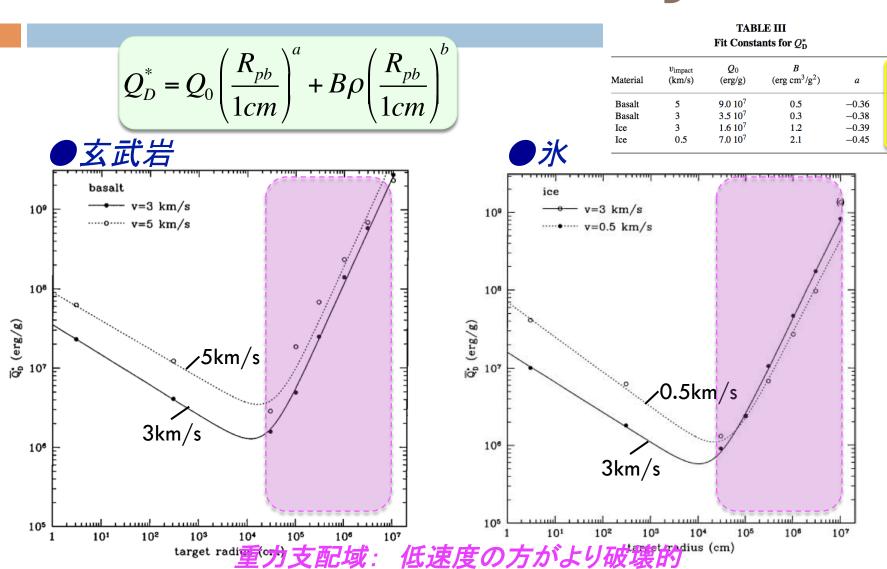
衝突破壊強度Q*Dのターゲットサイズ依存性

衝突破壊強度Q*Dの ターゲットサイズ依存性からわかること

- □ 強度支配域:サイズオ ⇒ Q*_D小
- 重力支配域:サイズオ ⇒ Q*_D大
 - □ その境界はターゲット半径100m~1kmのところ
- □ 同サイズにおいてQ*。は衝突角度依存性がある
 - □正面衝突は75°斜め衝突の約10倍壊 れやすい
- □ 重力支配域におけるQ*Dの増加の原因
 - Q*_D衝突ではかなり粉砕されてしまうが、分散はされない
 - 相対速度がアグリゲイトの脱出速度を 超えないから

衝突角度に依存しないQ*D

- □ 等方的に弾丸がとんでくるとして...
 - 角度 α と α + d α の間の角度の衝突の確率分布
 - P(α)d α =2sin(α)cos(α)d α 0< α < $\pi/2$
- □ フィッティング;


$$Q_D^* = Q_0 \left(\frac{R_{pb}}{1cm}\right)^a + B\rho \left(\frac{R_{pb}}{1cm}\right)^b$$

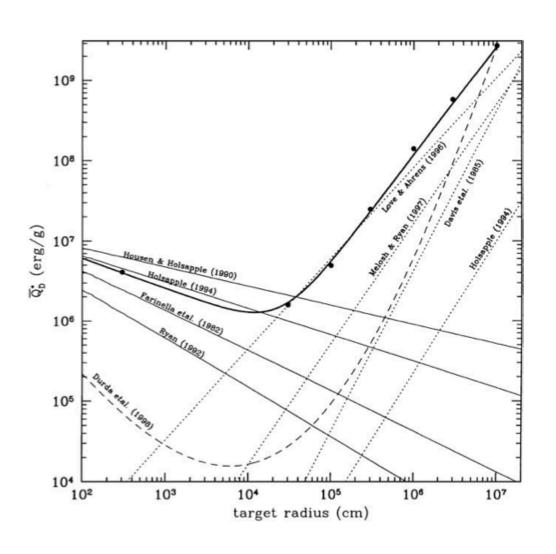
- R_{pb}:ターゲットの半径, ρ:母天体の密度, Q₀,B,a,b:定数
- □ a(a<0):強度支配域
- □ b(b>0):重力支配域

TABLE III Fit Constants for Q_D^*

Material	v _{impact} (km/s)	Q_0 (erg/g)	$B (erg cm^3/g^2)$	a	b
Basalt	5	9.0 10 ⁷	0.5	-0.36	1.36
Basalt	3	$3.5 \ 10^7$	0.3	-0.38	1.36
Ice	3	$1.6\ 10^7$	1.2	-0.39	1.26
Ice	0.5	$7.0\ 10^7$	2.1	-0.45	1.19

衝突角度に依存しないQ*D

低速度衝突の方が運動移行効率が良いため


1.36

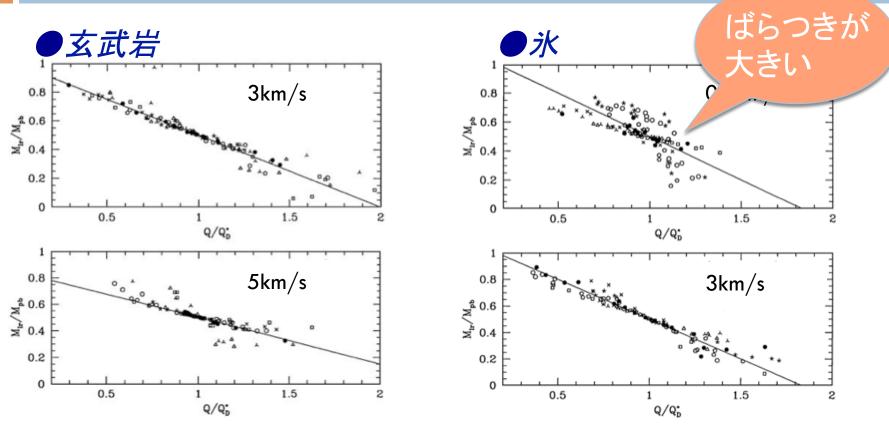
1.36

1.26

1.19

先行研究との比較

- □ 小さいサイズ範囲で、 Holsapple 1994とよく合う
- 大きいサイズ範囲では、 どの結果よりもQ*_Dが大きい(壊れにくい)
- 強度支配域から重力支 配域への移り変わりが、 サイズの小さいところで みられる
- 100-200mのターゲット が最も弱い
 - Durda1998と同じ


最も弱い天体半径Rweak

□ ある物質について、最もQ_D*が小さくなる半径R_{weak}は

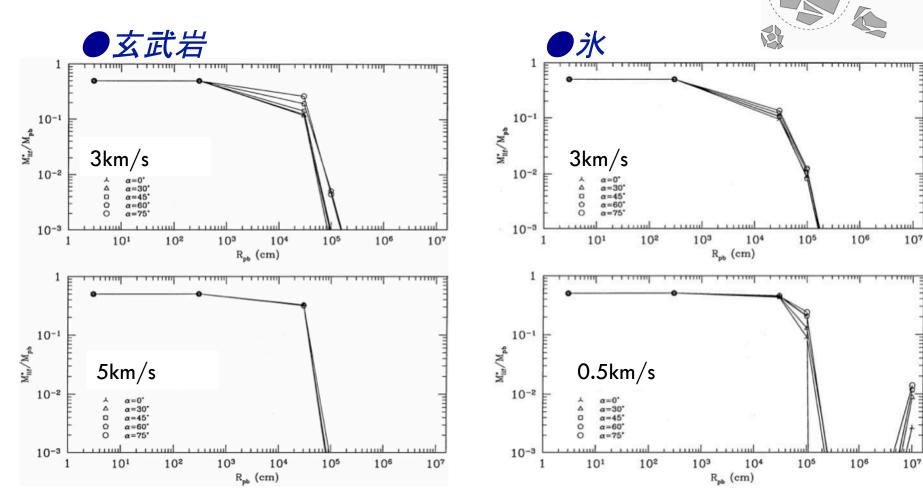
$$dQ^*_D/dR=0$$
とすることによって得られる

Material	v _{impact} (km/s)	R _{weak} (m)	
Basalt	5	163	どれも _ 100~200m
Basalt	3	117	100~200m
Ice	3	102	先行研究と比べる
Ice	0.5	213	とかさい

最大破片質量(M_{Ir})の エネルギー密度(Q)依存性

- □最大破片質量はQに依存
- □ターゲットサイズ、衝突角にはよらない

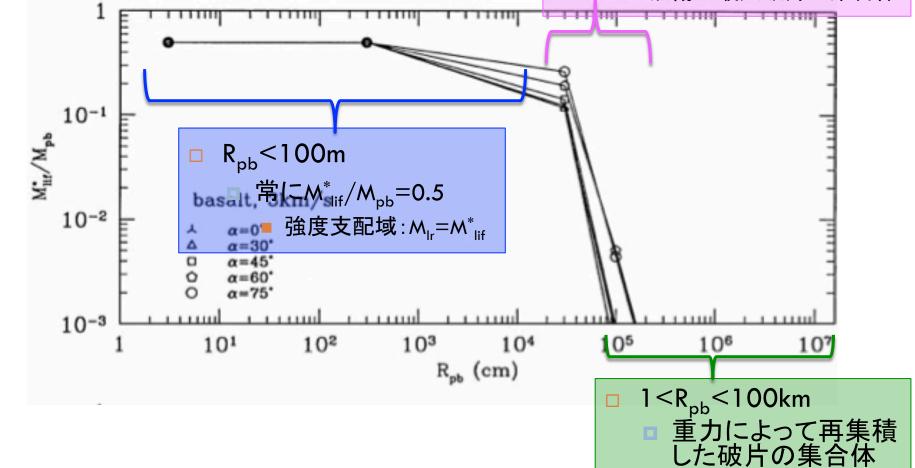
ー枚岩の最大破片質量M*_{lif}のターゲットサイズ依存性


Strength regime:

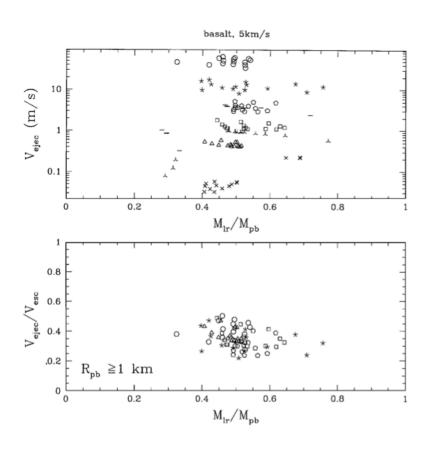
Individual fragments

Gravitational regime: Rubble aggregate largest remnant

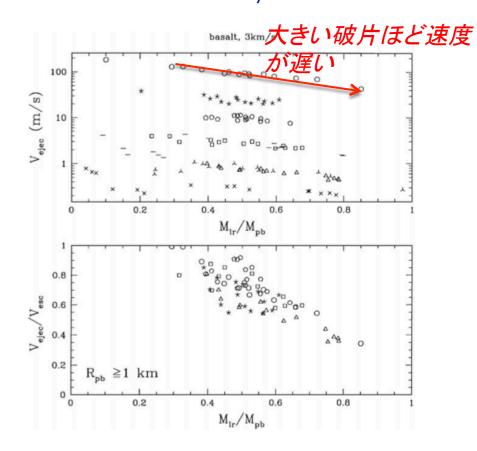
largest intact


 $M_{lif}=f(Q)$ をフィッティング $\Rightarrow M^*_{lif}=f(Q^*_D)$ とする

無傷の最大破片質量M*ೖの ターゲットサイズ依存性 R_{pb}>数100m

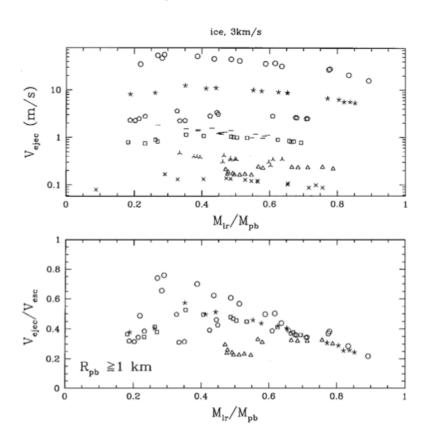

無傷の最大破片質量: M*_{lif}=f(Q*_D)

- M*_{lif}/M_{pb}は急激に下がる
 - 重力支配域:最大破片は 無傷の最大破片の集合体

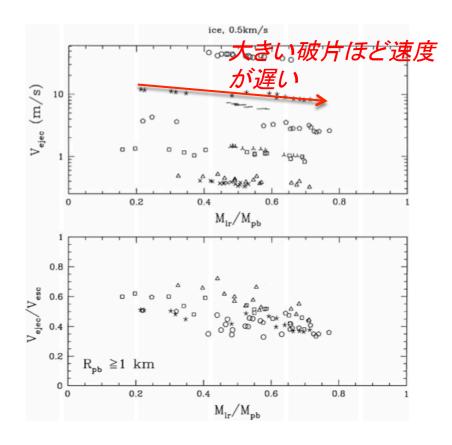


最大破片放出速度(玄武岩)

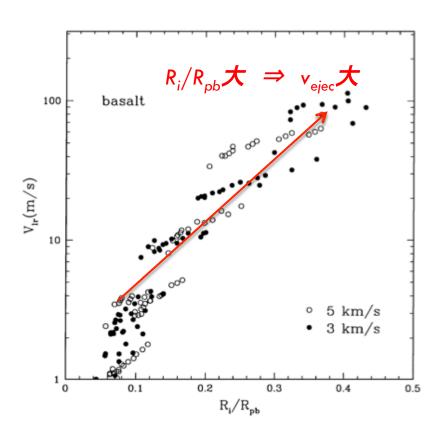
●玄武岩, 5km/s



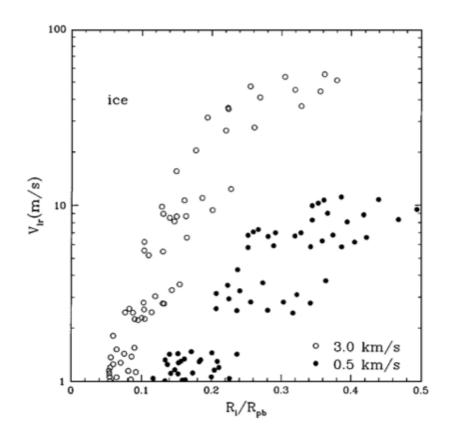
●玄武岩, 3km/s



最大破片放出速度(氷)

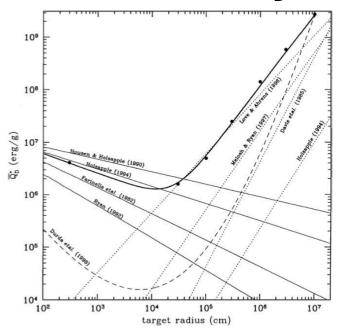


●氷, 0.5km/s



最大破片放出速度

●玄武岩



●氷

論文のまとめ&問いの答え

- □ 強度支配域から重力支配域まで衝突破壊をシミュレー ションした
- □ 太陽系において最も弱い天体: 半径100-200m
 - □これ以上の天体では重力支配
- □ 衝突破壊強度Q*pは先行研究より大きい値を示した

問い「衝突破壊強度Q*_Dの ___サイズ依存性とは?」

- □ 強度支配域:サイズ オ ⇒ Q*_D小
- 重力支配域:サイズオ ⇒ Q*_Dオ
 - その境界はターゲット半径 100m~200mのところ